
RPC-V: Toward Fault-Tolerant RPC for Internet Connected Desktop Grids with
Volatile Nodes

Samir Djilali, Thomas Hérault, Oleg Lodygensky,
Tangui Morlier, Gilles Fedak and Franck Cappello

INRIA, LRI, Université de Paris Sud, Orsay, France
email: {djilali, herault, lodygens, tmorlier, fedak, fci}@lri.fr

Abstract

RPC is one of the programming models envisioned for
the Grid. In Internet connected Large Scale Grids such as
Desktop Grids, nodes and networks failures are not rare
events. This paper provides several contributions, examin-
ing the feasibility and limits of fault-tolerant RPC on these
platforms.

First, we characterize these Grids from their fundamen-
tal features and demonstrate that their applications scope
should be safely restricted to stateless services.

Second, we present a new fault-tolerant RPC protocol
associating an original combination of three-tier architec-
ture, passive replication and message logging. We describe
RPC-V, an implementation of the proposed protocol within
the XtremWeb Desktop Grid middleware.

Third, we evaluate the performance of RPC-V and the
impact of faults on the execution time, using a real life ap-
plication on a Desktop Grid testbed assembling nodes in
France and USA. We demonstrate that RPC-V allows the
applications to continue their execution while key system
components fail.

1 Introduction

Large scale distributed systems like Desktop Grids,
Global and P2P computing systems, harness large set of
Internet connected resources. Among the large number
of issues raised by these systems (security, privacy, co-
ordination, scheduling, load balancing, etc.), two are di-
rectly connected to application programming: program-
ming paradigms/models and fault tolerance.

Several message passing models are currently investi-
gated for the Grid. A significant research effort focuses on
RPC. GridRPC [30], Ninf[23], Netsolve[9], GridSolve [7]
and OmniRPC [29] are examples of RPC specifications and
implementations. Very few investigate the issue of fault tol-

erance. Only a study on Netsolve [25] reports the fault tol-
erance of one part of the environment: the servers. In this
paper we investigate fault tolerance in a wider perspective,
considering that all component types of the system may fail
potentially simultaneously.

There are many studies about fault tolerance in RPC like
environments. The related work section presents a selec-
tion of them. Most of the previous works have investi-
gated the approach of automatic/transparent fault tolerance
in the context where the system exhibits the properties of
a pseudo-synchronous network. Thus, they basically rely
on replication techniques, using reliable group communica-
tion primitives. Internet connected Desktop Grids raise two
additional issues: scalability and less controllable behavior
that may preclude such techniques.

This paper studies transparent and automatic fault-
tolerant RPC in the context of large scale Grids, considering
an actual implementation. The second section investigates
the application scope according to Internet connected Desk-
top Grid characteristics. The related work section shows
that none of the previous works has studied the same prob-
lem and that no existing solution fits the Desktop Grid con-
text. Section 4 describes the protocol and the implementa-
tion of RPC-V. In section 5, we examine the properties of
RPC-V in terms of performance and fault tolerance.

2 Problem Statement

The applications scope depends on the programming
paradigm concepts and the type of services (stateless and
stateful) that are guaranteed to work on the considered plat-
form. In the rest of the paper we will focus on RPC pro-
gramming style on Grids. For the sake of simplicity, we
call a “service” the function executed by a RPC server in
response to a client RPC call, assuming that servers and
clients are connected by the Grid.

0-7695-2153-3/04 $20.00 (C) 2004 IEEE



2.1 High Level Concepts of RPC for the Grids

In order to address fundamental issues, we restrict our
study to some key concepts of RPC for large scale Grids.
For example, we limit the scope of our study to simple
scheduling and data communication modes. These concepts
are synthesized from an analysis of existing environments
and proposed specifications: Netsolve [9], Gridsolve [7],
Ninf[23], OmniRPC [29], GridRPC [30], NES [8], NEOS
[15] and RCS [2].

API. Most RPC environments for the Grid provide very
similar programming API, allowing the programmer to call,
from the client program, library functions or applications on
the server side. Most environments provide blocking and
non blocking RPC calls. Consecutive non blocking RPCs
lead to concurrent RPC executions at the server side.

Virtualization. The Grids are characterized by dynamic-
ity and heterogeneity of their components, leading to the
necessity of a virtualization layer between the application
launching RPC calls and the execution servers. Gener-
ally, the virtualization layer is implemented by a middle
tier between the clients and the servers called the agent in
Netsolve, resource manager in NES, server in NEOS and
Globus MDS in Ninf.

Basic Fault Management Policies. To cope with server
crash or disconnection, different fault tolerance schemes
could be considered. In Netsolve, GridSolve and NES,
the agent (called resource manager in NES) detects servers
failures and re-launches RPC execution without user pro-
gram intervention. In Ninf and OmniRPC, the programmer
should anticipate the situation and should add in its program
fault detection and recovery actions. In this paper, we con-
sider the first case.

Scheduling. RPC environments for the Grid use a sched-
uler, responsible for finding and allocating the most ap-
propriate resources for a given RPC call. For this study,
we only consider allocating RPCs on servers individually
and independently. A typical mechanism implementing this
functionality is the match maker of Condor [27]. As dis-
cussed in [10], more complex scheduling heuristics can be
implemented at the client side or on top of the Grid infras-
tructure [11].

Data (RPC Parameters and Results) Communication
Mode. We only consider the synchronous communication
mode, where parameters are transmitted along with the RPC
call, capturing a) classical data transmission where argu-
ments/result are marshaled into a serialization format and

b) file transport where a file or a directory is compressed
into an archive file.

2.2 The Challenge of Large Scale.

Fundamentally, the characteristics of Internet connected
Desktop Grids derive from the combination of best-effort
networks and infrastructures gathering a large number of
weakly controlled and volatile computing nodes.

Volatility. The size of large scale computing infrastruc-
ture makes the node disconnection probability not a rare
event. The origin of disconnection can be hazardous (a node
shutdown, punctual high response time or crash, a com-
munication timeout due to long network stall or high con-
gestion), or due to management policy restricting node and
network utilization for Grid applications only on idle time.
Even though progresses may be done in volatility predic-
tion, it is likely that Internet connected Desktop Grids will
always suffer of a certain level of unpredictable failures.

No Stable Component. The unpredictability of compo-
nent volatility precludes to consider the existence of sta-
ble components in the system. Thus fault tolerance mech-
anisms such as fault detectors and recovery techniques
should be used on every component of the system. The po-
tentiality of client failures immediately raises the issue of
selecting a policy about ongoing RPC calls. In this paper,
we consider client disconnection as a normal event, assum-
ing that users may use mobile terminals. Thus we let the
execution continue on the server side.

Intermittent Crashes. One element increases the volatil-
ity issue: components may leave the system for any period
of time without prior notification. For example, nodes inter-
rupted abruptly and restarting from a checkpoint image (like
a suspend on disk) may not have time to announce their dis-
connection, and may restart in a state inconsistent with the
rest of the system. More generally, due to the lack of con-
trol of the participating nodes, it is impossible to guarantee
that the nodes will behave as expected during disconnection
and reconnection.

Internet. The Internet is considered as a best-effort net-
work. Its wide performance fluctuations can lead to incor-
rect fault detection. Usually, fault detectors in fault-tolerant
distributed systems provide each system component with a
list of suspected dead components. Wrong detections raise
two issues: wrong positives (dead components are not sus-
pected), and wrong negatives (alive components are sus-
pected). Some known techniques can be used to limit the
wrong positives on Internet. Wrong negatives are due to
unbound message delays, and may not be avoided [12].

2



Connection-less Interactions. In Internet connected
Desktop Grids, it is likely that many clients will be con-
nected to a server at a given time. Reciprocally, it is likely
that many servers will be connected to a client launching
a large number of non blocking RPCs. Because of sys-
tem basic settings, the number of simultaneous open con-
nections is bounded. As a consequence, many large scale
systems[9, 1, 14] use connection-less interaction protocols:
for any interaction with other system components, a con-
nection is opened before the communication and closed im-
mediately after. This technique precludes the use of con-
nection break as a fault detector and implies the use of a
”heart beat” signal to detect anomalies.

Changes of the System Size. In large scale Grids, a large
portion of the participating nodes connect and disconnect
the system from their own initiative, involving huge varia-
tions of the system size. The turnover is so high that even
nodes participating to the total count are frequently chang-
ing [28]. In such system, the notion of majority may have
no value since it is likely that a large portion of nodes partic-
ipating to a decision may not be up when the decision will
apply.

2.3 Analysis: stateless or stateful sercices?

Even if we consider the Internet as a pseudo-
synchronous network, a) intermittent crashes, or b)
connection-less interactions associated with congestion,
introduce unbound delay on message transmission. Follow-
ing these assumptions, we conservatively characterize large
scale Grids connected by the Internet as asynchronous dis-
tributed systems. Note that some authors are also consider-
ing the Internet as fully-asynchronous network [5].

In addition, volatility implies that crashes may be per-
manent. Since there is No stable component, the article
[20] demonstrates that consensus is impossible in a system
characterized by an asynchronous network with at least one
failure i.e. where there is no bound on message delay.

A commonly proposed approach to circumvent this
problem is to use failure detectors. In [13], the authors de-
fine the minimal requirements on failure detectors to solve
the consensus problem. These two requirements should
hold for a ”sufficiently long” period of time for the algo-
rithm to achieve its goal. Unfortunately, the dynamicity of
Internet connected Desktop Grids is so high that it is im-
possible to estimate a period of time, relative to the appli-
cation execution time, for which the two requirements hold.
Furthermore, this approach assumes that a majority of pro-
cesses are correct, but changes of the system size turns ma-
jority into a fuzzy notion.

To implement a fault-tolerant stateful services, servers
have to agree on a global order of RPC events which is a

form of consensus. In [3], the author shows that agreement
protocols, even on pseudo-synchronous networks are very
slow. In conjunction with the changes of the system size,
agreement may not be meaningful.

The overall conclusion of this section (and first contribu-
tion of the paper) is the following: according to the current
knowledge of the Internet and Desktop Grid resources be-
havior, the application scope of Internet connected Desktop
Grid should be conservatively restricted to applications call-
ing stateless services and at-least-once semantics. There are
too many uncertainties to guarantee the correct execution of
stateful services with exactly once semantics.

3 Related Work

We present previous works in several domains: a) Grid,
b) large scale distributed systems and c) RPC.

3.1 Fault Tolerance for the Grid

One of the first paper discussing fault tolerance for the
Grid [31] proposes, implements and tests an unreliable fault
detector service. This paper demonstrates that wrong fault
suspicion (wrong positive) occurs even in a Grid with few
nodes

In [33], the authors propose a three-tier fault-tolerant
architecture associated with replicated executions on the
server side. Several coordinators work as middle tiers and
vote trying to reach a consensus on the result of replicated
jobs. Obviously, this approach is limited to synchronous
networks not featuring the issues discussed in the previous
section.

GridRPC [30] is a proposal to standardize a remote pro-
cedure call (RPC) mechanism for Grid computing, but it
does not encompass fault tolerance mechanisms.

Ninf [23] and Ninf-G employ a client-server model but
do not provide fault detection nor recovery. Instead, Ninf-
G assumes that the back-end queuing system takes this re-
sponsibility.

RCS [2] provides an interface to a variety of numerical
linear algebra libraries on UNIX platforms but does not im-
plement any fault tolerance mechanism.

NetSolve [25] uses a client-agent-server paradigm and
provides two levels of fault tolerance for the servers: a)
inter-server fault tolerance moves the computation to an-
other server when the failure of a server is detected by an
agent, b) usual techniques of coordinated checkpointing and
rollback recovery ensure intra-server fault tolerance. Agent
and client fault tolerance is not supported.

In [16], we have developed and tested a RPC environ-
ment for P2P systems. However, we restricted our fault tol-
erance study to server faults, assuming that the other system
components are stable.

3



Legion [24] is an object-based meta-systems designed
for large scale distributed systems. Fault tolerance is
based on the reflective graph and event model (RGE).
This approach allows implementing a large variety of auto-
matic fault-tolerant protocols: coordinated checkpoint, pes-
simistic message logging, passive replication. However, all
implemented protocols assume either a reliable network, re-
liable storage or some reliable components.

Thus none of the previous works in RPC for the Grid
has addressed the issue of full fault tolerance for all system
components.

3.2 Large Scale Fault Tolerance

The main problem introduced by the large scale with re-
spect to fault tolerance is the impossibility of consensus de-
scribed in the previous section. A solution to address this
problem is to use probabilistic protocols [26] [21]. How-
ever, these protocols can not eliminate some executions, yet
unlikely, where the result does not match the consensus.

In [34], the authors describe the benefit of epidemic
communication primitives in the context of asynchronous
networks. This kind of protocols, inspired by work on
large scale database, use reconciliation techniques between
neighbors to implement, in a distributed, asynchronous and
probabilistic way, the convergence of the system toward a
state or a decision. In practice, at large scale, the time re-
quired for the convergence of the full system is far higher
than the time between two system changes [6]. Thus such
protocol could be interesting for establishing agreement
within a certain horizon but not at the full system size.

3.3 Fault-tolerant RPC

Fault tolerance in RPC can be addressed at different lev-
els of the software stack.

In [19] the authors propose a replication scheme at the
TCP/IP level assuming primary and backup servers. The
backup servers use a leader/follower consistency protocol
to keep their state consistent with the primary. The proto-
col relies on the leader election which is impossible in the
context of asynchronous network.

In [32] a pool of similar servers, possibly geographi-
cally distributed across the Internet, cooperate in sustain-
ing a service by migrating the client connections within
the pool. The migration mechanism ensures that the new
server resumes the service while preserving the exactly-
once delivery semantic across migration, thus assuming a
synchronous property of the Internet, which is likely to be
erroneous at large scale as discussed in previous section.

Fault tolerance has been deeply studied for object ori-
ented distributed systems and especially in the context of

the Corba middleware. FT-Corba [5] achieves fault toler-
ance management by object replication, fault detection and
recovery. Recovery is done by electing a new primary ob-
ject if the current one is suspected to be faulty. In this case
too, election means the capability to establish a consensus,
which is impossible in our context. One elegant proposal
for FT-Corba implementation relies on a three-tier architec-
ture, making the middle-tier the corner stone of the fault
tolerance protocol [4]. This protocol partially releases the
requirement of network synchrony requiring that the middle
tier replicas are deployed on a synchronous system.

In this domain too, there is no previous works consid-
ering the context of RPC execution at large scale on asyn-
chronous networks.

According to our knowledge, no research result has been
published concerning the problem statement described in
the previous section.

4 RPC-V Protocol and Implementation

client

RPC client
server

RPC server

server

RPC server

server

RPC server

server

RPC server

RPC call/result

client

RPC client

client

RPC client

Coordinator

Figure 1. RPC-V General Architecture

RPC-V is an automatic and transparent fault-tolerant
environment for RPC programming on Internet connected
Desktop Grids. The main features of RPC-V (API, virtu-
alization, basic fault management policies, scheduling and
data communication modes) have been designed according
to the context of large scale Grids, described in section 2.

It tolerates any fault combination of its system compo-
nents. Even if Internet connected Desktop Grids limit the
application scope to the one calling stateless services, the
evaluation section will show that many applications can take
benefit of RPC-V.

RPC-V design follows a new fault tolerant architecture
based on 1) a three-tier architecture (clients, Coordinator,

4



servers) described in figure 1 2) message logging on all sys-
tem components 3) fault detector on all components and 4)
passive replication of the coordinators. Despite all these
four elements are well known, their combination is original
and leads to a robust system as demonstrated in evaluation
section.

4.1 Fault-Tolerant Protocol

The fault-tolerant protocol is defined from a fault model,
fault detection mechanisms and the actions of every compo-
nent.

Coordinators communicate together, according to a
topology updated on fault suspicion. In the rest of the paper,
we denote by Coordinator, the coordination service and by
coordinators the components implementing this service.

Each client and server has a preferred coordinator, with
which it communicates. This coordinator may not be the
same for all the components.

FD

FD

FD

FD

FD

RPC client

client

FD

RPC call/result

"heart beat"

Fault Detector

Msg log

Coordinator

replica

replica

replica

replica

FD

RPC server

server

Figure 2. RPC-V Fault-Tolerant Protocol

Model of Faults. Faults can occur at any time on any
component (potentially on all components simultaneously),
and can be intermittent or permanent. Every restarting com-
ponent restarts from the beginning of its execution or from
its last local state (which can be implemented using unco-
ordinated checkpointing techniques). Obviously, for the ap-
plication to progress, at least one client has to submit RPCs,
one coordinator has to forward them, one server has to exe-
cute submitted RPCs, and the coordinator should be able to
communicate with the two other components.

Fault Detectors. The core of the fault-tolerant protocol is
the fault detector. As we assume an asynchronous network,
the fault detection can only be used for suspecting a compo-
nent failure. To avoid confusion, in the following sections,
we use the term fault suspicion instead of fault detection.
As described in figure 2, users ensure the fault suspicion
of clients; every component of the system implements fault

suspicion of the coordinators; the coordinators implement
the fault suspicion of the servers. Thus every component of
the system uses at least one fault detector and can be sus-
pected by at least another component.

Preventive Actions. In addition to the component inter-
actions described above, every component performs the fol-
lowing preventive actions:

It locally logs every sent message (sender based message
logging). For each communication, components synchro-
nize their local state from these logs. This synchronization
is useful to ensure: 1) client applications to rollback their
execution to the point exactly following the last RPC call
registered on the Coordinator, and 2) servers to re-execute
RPCs if their results are not accessible anymore on coordi-
nators.

Additionally, when two coordinators communicate, they
synchronize their states, using a passive replication algo-
rithm. Coordinators may have different views of the system
due to the network asynchrony.

Actions on Suspicion. When an user suspects a client ap-
plication failure, it simply re-launches the application, on
the same node, or on another one. This feature allows the
user to disconnect itself from the system while the compu-
tation is still in progress. On reconnection, the client and
coordinator synchronize their state from their local logs.
This is the responsibility of the user to select the appropriate
client and manage the client replicas.

When a client or a server suspects its preferred coordina-
tor, it selects another one, contacts it and they synchronize
their states from their local logs.

When a coordinator suspects a server failure, it schedules
new instances of all RPC calls forwarded to the suspect,
on a new or unsuspected servers. This implements the ”on
suspicion” replication strategy.

When a coordinator suspects one of its neighbor coordi-
nators in the topology, it computes a new topology in order
to stay in the same connected component.

Note that due to system asynchrony, all components may
wrongly suspect all other ones, leading to partition the sys-
tem. Our protocol guarantees that the client application pro-
gresses as long as there is a path between a client and a
server (progress condition).

4.2 Implementation

This paper focuses on the protocol and its implementa-
tion. We give here a rapid view of the programming API
and the security approach.

5



The RPC-V API is compliant with GridRPC [30] ex-
cept the functions for Remote Function Handle Manage-
ment that are absent of the RPC-V API. The coordinator
virtualization and forwarding avoid the need of function
handle management at the client side (the client never con-
nects to the server directly). Instead, this is handled by the
coordinator. As a consequence, any client application writ-
ten following the GridRPC API can be executed on RPC-V.
Note that GridRPC API is not transparent for the program-
mer: application-side invocations do not appear to be local
procedure calls.

We have implemented RPC-V protocol on top of the
XtremWeb [18] Desktop Grid middleware as a proof of con-
cept. XtremWeb already provides the client, coordinator
and server basic mechanisms. XtremWeb is implemented
with popular technologies such as Java and MySQL. In
XtremWeb, the client submits jobs on the coordinator,
which are translated as tasks (instances of jobs) and for-
warded to the server (known as the worker in XtremWeb).
Jobs in XtremWeb are very close to remote execution calls
and encompass command line and an optional directory
archive (the called executable is transferred automatically
on the server side if necessary).

Security on the Grid means dealing with authentica-
tion, authorization, integrity and privacy between clients
and servers. In XtremWeb, authentication is done by cer-
tificate, integrity is ensured by Sandboxing executions at
the server side, privacy can be forced by encrypted com-
munications. Authorisation is checked dynamically by the
sandbox and can be done on a per user or community basis.
In addition, chains or trees of RPC calls raise the issue of
delegation of trust. Currently, delegation is not managed in
XtremWeb but it could be implemented using approaches
like proxy certificates [22].

The following paragraphs describe the integration of
RPC-V protocol in XtremWeb.

Fault Detector. To limit the message traffic and coordi-
nator complexity, we implement the fault detector for coor-
dinators and servers by a ”heart beat” signal sent periodi-
cally. When an ”heart beat” signal is timed out, we assume
(maybe wrongly) a failure, whatever is the reason: either a
crash, a network failure or an intermittent congestion. The
”heart beat” frequency is adjusted considering the tread-off
between Coordinator reactivity and congestion.

Coordinator Topology and Preferred Coordinator. We
provide all components of the system with a finite list of
known coordinators. This list has to be loaded for a first
time and updated frequently as it evolves according to fault
suspicions. All components download the same list at sys-
tem initialization from known repositories (web servers,
DNS, mail communicated messages, etc...). The list is up-

dated locally from system fault suspicions and merged pe-
riodically, at ”heart beat” signal receptions. It is also up-
dated periodically based on user information by contacting
the known repositories.

Communication Protocol. Connection-less communica-
tion leads to design a system where node disconnections are
not faults but features of the system, allowing mobile clients
and off-line computing at server side.

The communications between (i) clients and coordina-
tors, and between (ii) servers and coordinators are asymmet-
ric and connection-less. Clients and servers initiate all com-
munications to the coordinators and disconnect between
two communications. The coordinators only reply to clients
and servers requests.

Synchronization. Synchronization with a coordinator de-
termines received and lost messages, which are resent. The
synchronization implementation depends on each compo-
nent local information. For a client, all messages are tagged
with a timestamp (all client RPC submissions are associated
with a unique counter value), which is compared to the max-
imum timestamp known for this client by the coordinator.
Between two coordinators, the synchronization exchanges
maximum timestamps for all known clients. Since servers
may have non-contiguous timestamps for a given client, the
synchronization is more complicated, involving a peer-wise
comparison of logs.

Managing Message Logs. The garbage collection is a
fundamental mechanism associated with message logging.
Since logging capacities are bounded, we should decide
whether flushing some logs, that may be potentially use-
ful for avoiding re-executions, or stopping computations,
reducing the system resource utilization. The garbage col-
lection is distributed among all the components and can be
triggered locally according to some conditions, or explicitly
by the user.

Any client RPC call execution in the system is identi-
fied by: the user unique ID, a session unique ID and a
RPC unique ID. A session corresponds to the logging of
the user into the system. The session ends on logout. Any
instance of the client program may connect the Coordinator
with different IP and retrieve results and RPC status using
the unique IDs. Note that theses IDs are used only to re-
trieve information about a RPC call. The security is not
implemented using these ID but by several mechanisms as
discussed at the beginning of this section.

The client submits RPC by sending function identifier
and parameters, to the coordinator. Like most Grid RPC
implementations, RPC submission may be non-blocking
(asynchronous). The client collects the RPC results by
pulling the coordinator periodically. RPC submission and

6



Msg log

XW Client
coordinator

Passive replicas

Msg log

coordinator coordinator

DataBase DataBase

DataBase

job task

job
job

job

job

task resultjob result

RPC Client

XW server

RPC server
RPC result RPC call RPC call RPC result

Figure 3. RPC-V Implementation within
XtremWeb

result collection may be executed concurrently, typically
with a multi-threaded client, in order to start collecting re-
sults while submission is still on going.

The application, programmed using a subset of the
GridRPC API, runs concurrently with the XtremWeb client
and issues RPC calls to it.

As previously discussed, the XtremWeb client transpar-
ently logs every message and tags them with a timestamp.
Several logging strategies can be considered. The per-
formance section will compare optimistic, blocking pes-
simistic and non-blocking pessimistic logging. The syn-
chronization mechanism is implemented in the core of the
XtremWeb client.

Coordinator. The Coordinator schedules the client RPC
calls to the appropriate server, according to a set of crite-
ria: service availability, server workload, observed parame-
ters/results communication time.

The current implementation of the coordinator consid-
ers a basic “First Come, First Serve” scheduling policy and
a simple coordination scheme between coordinator sched-
ulers: to prevent too much tasks duplication when several
server partitions are connected to different coordinators,
tasks are replicated among coordinators with their state (fin-
ished, ongoing, pending) and each local scheduler takes the
following decisions: finished tests are not scheduled by a
coordinator replica; ongoing tasks are not scheduled until
the coordinator replica suspects the disconnection of its pre-
decessor; pending tasks are scheduled. However, even with
such policy, the system asynchrony may lead to duplicated
executions. This simple implementation does not schedule
RPC redundantly in order to anticipate potential failures.
However, this could be added easily with a replication flag
associated with the task state.

The current implementation of passive replication con-
nects the replica on a ring topology. Each coordinator

knows a set of other coordinators through its neighbors list.
Using a common order on this set, a coordinator computes
its position in this list, and a successor relationship. Regu-
larly (with the ”heart beat” signal), a coordinator sends an
abstract of its state to the successor in the list. If the succes-
sor does not acknowledge the state propagation, it is sus-
pected to be down, the list is locally updated accordingly
and the next coordinator in the list is contacted. Thus, the
ring topology is virtual and may change at each ”heart beat”
signal sent.

For message logging inside the coordinator, we distin-
guish between job descriptions and file archives. Job de-
scriptions are stored in a database, for fast management, and
file archives are stored in an optimized file system. Job de-
scriptions are translated in tasks descriptions stored in the
same database, and there is no replication of file archives.

Server. The management of off-line computing servers
directly derives from the connection-less communication
protocol between the servers and the coordinator. The same
server may disconnect the coordinator, continue the execu-
tion and re-connect the coordinator later for sending RPC
results.

The server receives the task description along with the
command line and file archive and launches the execution
of the corresponding executable. When the execution ter-
minates, the server builds an archive of new or modified
files (including application outputs) and sends it to the co-
ordinator.

The file archives built as the results of the executions rep-
resents the server logs. Thus the logging protocol is neces-
sarily pessimistic. The synchronization mechanism is im-
plemented in the core of the XtremWeb server.

5 Performance Evaluation

In the performance evaluation, we made two types of ex-
perimentations. This first set presents the performance of
our system in a confined environment where we have the
control of all the platform parameters. In a second step, we
tested RPC-V in a real life environment : deployment on the
Internet and a production application.

5.1 Local Experimentation

In this section, we evaluate the performance of three ba-
sic fault tolerance mechanisms (message logging, coordi-
nator replication and synchronization) and the system fault
tolerance. The objective is to evaluate the general trends
governing system performance and fault tolerance. Perfor-
mance optimizations and system scalability will be investi-
gated in future works.

7



100 10000 1e+06 1e+08
data size (Bytes)

0.01

0.1

1

10

100

tim
e 

(s
ec

)
optimistic logging
non-blocking pessimistic logging
blocking pessimistic logging

1 10 100 1000
nb calls

0.01

0.1

1

10

100

tim
e 

(s
ec

)

Figure 4. Message Logging

We have selected the experimental platform according
to two criteria: 1) experimental results reproducibility and
2) the capacity to highlight the system overheads and fault
tolerance capabilities.

A major issue concerning experiments on the Internet is
the experimental conditions and results reproducibility on a
network where performance fluctuate widely. We consider
that a more controllable environment is preferable.

Highlighting the system overhead implies diminishing
the relative impact of all the other components of the ex-
ecution time. High communication time (communications
on the Internet) would hide the system overheads. Thus a
more efficient network is desirable.

In order to stress our system to its limits, we have to
artificially generate potentially correlated faults at high fre-
quencies which is, on the Internet: 1) difficult to achieve and
2) unlikely to occur during the experiment. For this study
too, we need a more controllable network.

All these criteria suggest running the experiments on a
fully controllable and isolated platform such as a dedicated
cluster, where we can stress our system to a higher degree
than on the Internet.

The experimental platform consists in a cluster of PCs
under Linux 2.4.20, arranged in three major parts: 16
servers or computing nodes, 4 coordinators and 1 client. All
parts are connected to a single 48-port Ethernet 100 Mbit/s
switch. All nodes are equipped with Athlon XP 1800+ pro-
cessors, running at 1.5 GHz, 1 GByte of main memory and
an IDE disk.

All experiments run a synthetic benchmark on the client
side, executing a set of non-blocking configurable RPC
calls. The configuration parameters are the RPC execu-
tion time, its parameter and its result size. The RPC exe-
cution time will be kept very low (few seconds) in order to

highlight the system overheads. The results presented in the
figures are mean values over several executions (negligible
standard deviations were observed).

To generate faults in a controllable and reproducible
manner, we have built a fault generator, running as a re-
motely controllable daemon. Upon order, or from its own
initiative with respect to its configuration, the fault genera-
tor kills abruptly the RPC-V component of the hosting ma-
chine.

To limit the interference of a too long ”heart beat” signal
on performance and fault tolerance evaluation, we have set
its period to 5 seconds. A fault is suspected when no ”heart
beat” is received for a period of 30 seconds.

Message Logging: The first experiment compares three
different message logging strategies [17] at the client side.
The first strategy is the optimistic message logging: log-
ging is done asynchronously, in parallel with the commu-
nication. It is optimistic because a crash may occurs be-
fore the completion of logging operation. The two other
strategies are based on pessimistic logging, either block-
ing or non-blocking. The blocking one blocks the begin-
ning of the communication until logging completion. The
non-blocking one blocks the end of communication until the
completion of the logging operation.

For these three protocols, we compare the RPC submis-
sion time as measured by the client and we evaluate the syn-
chronization cost that the client will observe. The left part
of figure 4 presents the RPC submission time according to
the parameters size. We have submitted 16 calls, varying the
parameters size from some bytes up to 100 MBytes. The
right part of this figure presents the RPC submission time
according to the number of RPC calls. Since the size of the
RPC calls for this figure are small enough to be marshalled,

8



100 10000 1e+06 1e+08

data size (Bytes)

0.01

0.1

1

10

100

1000
tim

e 
(s

ec
)

1 10 100 1000
nb calls

0.01

0.1

1

10

100

1000

tim
e 

(s
ec

)

Figure 5. Coordinator Replication Time. Confined: Solid, Real Life: Dashed

there is no distinction between the two pessimistic logging
protocols.

As expected, the pessimistic blocking protocol adds an
overhead of approximately 30%, due to disc accesses. Be-
cause optimistic logging protocol runs with a low priority,
it adds negligible overhead compared to execution without
logging. Because non-blocking pessimistic logging needs
a minimal synchronization, it adds small and variable over-
head due to disc cache management.

The same fluctuation can be observed on the right figure.
In this case, the overhead can reach 100% of the optimistic
execution time, because the message logging time equals
the communication time for small messages.

The synchronization time depends on the crash pattern of
the client and the coordinator. Obviously, there is no syn-
chronization when none of them have crashed. If only one
of the components has crashed, the synchronization times
for the three protocols are identical: for client restart, the
client must re-execute the full application in the three cases;
for coordinator restart, there is no differences between the
three logging protocols, since client logs can be lost on
crash only. When both have crashed, all logs have been lost
in the optimistic protocol. Thus, the application has to re-
execute all the RPC submissions and the intermediate com-
putations. This is not the case for pessimistic logging where
logs can be sent immediately to the coordinator. So the dif-
ference is the inter-RPC application computation time.

Coordinator Replication: Solid curves of figure 5 show
the coordinator replication time in the confined environ-
ment. Every coordinator, has two neighbors: each being
a backup for its predecessor. We have measured the time
to replicate a coordinator status to its backup according to
two parameters: 1) the RPC data sizes with a fixed number
of 16 RPCs (leftmost figure) and 2) the number of RPCs
to replicate using small size RPCs (∼300 bytes) (rightmost
figure).

The leftmost figure shows the impact of database access
and the system overhead, which become negligible when
the RPC parameters size exceed 1MByte. Up to 10Kbyte,
these overheads dominates the replication time.

The rightmost figure demonstrates that replication
evolves linearly with the number of task descriptions to
replicate. In the current implementation, tasks are repli-
cated one after the other. The optimization consisting of
sending the full set of task descriptions would not improve
the replication time, on this platform, because it is bounded
by database operation time at the backup side.

Synchronization: Figures 6 presents the synchronization
time between a client and a coordinator, as measured by the
client, when logs are located at the client side or at the co-
ordinator side. Rebuilding the state of the coordinator from
the client logs can be six times faster than the opposite. This
is due to the implementation of the synchronization, which
is asymmetric depending on the location of the logs. When
logs are located on the client side, the synchronization op-
eration retrieves the logs list from a local disc access and
sends logs to the coordinator. In the second case, the client
has to retrieve the logs list from the coordinator, experienc-
ing an additional overhead, before the actual logs exchange
begins. The impact of this overhead diminishes when the
number of logs or the size of the parameters increases.

Fault Tolerance: To measure our system ability to toler-
ate faults, we test it under the following conditions: 1 client
submits 96 RPCs to a set of four coordinators (actually, only
to the preferred one). Each RPC spends 10 seconds and
produces few output bytes. 16 servers take in charge the
execution of client RPCs. Ideally, total execution would
last 60 seconds (6 rounds of 16 parallel RPCs). Depending
on activating logging techniques and replication or not, the
overhead of the infrastructure compared to the ideal execu-
tion varies between 9 and 11 seconds respectively (about

9



100 10000 1e+06 1e+08
data size (Bytes)

0.01

0.1

1

10

100

tim
e 

(s
ec

)
using client logs only
using coordinator logs only

1 10 100 1000
nb calls

0.01

0.1

1

10

100

tim
e 

(s
ec

)

Figure 6. Synchronization Time

17% of the execution time) (figure 7). This overhead in-
cludes scheduling and data transfers cost. For this test, all
nodes of the same kind are running a fault generator, simu-
lating a varying mean time between failures. We considered
that faults occurs independently across the nodes. A conse-
quence of this fault generation is the increase of the number
of faults in a system for a given time with the number of
nodes subject to failure. A fault on server induces the loss
of running tasks while a coordinator fault induces the re-
synchronization of client and all servers.

In figure 7, we compare the impact of the server and
coordinator fault on the benchmark execution time. When
faults occur, even through the task of restarting coordinator
may appear more complex than the one of restarting servers,
the dominating parameter is the continuation of the execu-
tion at the server side. The two curves clearly demonstrate
that the performance degradation is significant in both case,
and the server failures have a greater impact than the coor-
dinators failures. The main reason behind this result is the
total number of faults which is higher for the servers than
for the coordinators. This situation is likely to occur in a
real platform, where computing components will dominate
the infrastructure ones.

Note that the duration of the server task determines the
lowest fault period on servers under which the applica-
tion does not progress anymore. For the coordinators, this
threshold is defined by the minimal duration to ensure the
progress condition. Two implications of this result are the
following: 1) the full system provides better performance
when the most stable nodes are reserved for the servers and
not for the coordinators, 2) since the coordinator is in the
critical path between the client and the server, and since its
availability and performances directly determine the capac-
ity of the application to progress, its basic forwarding func-

tionality should be prioritized compared other mechanisms.

0 1 2 3 4 5 6 7 8 9 10
nb faults / minute 

60

80
100

200

400

600

800
1000

tim
e 

(s
ec

.)

faulty servers
faulty coordinators

Figure 7. Benchmark Execution Time Accord-
ing to Fault Frequency

5.2 Real life Experiments

To validate the results of the previous experiments, we
deployed RPC-V on the Internet. Three Universities par-
ticipated to this experiment: University Polytechnic School
of Lille (France), The University of Wisconsin (USA) and
Paris Sud University (France). We installed in each of these
places a hundred RPC-V servers in Desktop Linux PCs
(about 120) or computing nodes (around 160).

Two dedicated servers are used as coordinators: the main
one hosted at Paris is equipped with an Intel Xeon 2.40GHz
processor, 1Ghz of RAM and 200GB of Hard disk; the sec-
ond, located at Lille, has approximatively the same con-
figuration (Intel Xeon 2.66Ghz, 1Ghz RAM and 100GB

10



HD). All these computing equipments communicate be-
tween each other through the Internet.

For the experiment, we used a real life production appli-
cation of Alcatel. This application is a tool helping to val-
idate and evaluate commutation networks. It computes the
signal lost and the bandwidth for network configurations.

Figure 8. Distribution of Tasks Durations in
the Alcatel Application

This application allows the user to set the number of par-
allel tasks for a given execution. We run this application
with 1000 tasks. Figure 8 presents the distribution of the
tasks durations for this application and the used set of pa-
rameters. Note that the tasks duration varies in a wide range.
For all the following tests, the coordinator replication period
is set to 60 seconds.

Replication time: The first experiment analyzes the cost
(in time) of the replication through the Internet according to
the tasks size. We compare data transfers across the Inter-
net to data transfer in the confined environment. The dashed
curves of the figure 5 (leftmost side), demonstrates that In-
ternet data transfer evolves linearly but the reduced band-
width limits the replication performance compared to the
confined environment.

The second experiment measures the replication cost
through the Internet according to the number of tasks de-
scription to replicate. Like for replication in the confined
environment, the database accesses dominate the replication
time. Because the coordinators used for the real life exper-
iments exhibit better performance on database operations,
the replication time is lower than the ones in the confined
environment.

Fault tolerance: For the three following tests, we run the
Alcatel application on the testbed using two replicated co-
ordinators: one at LRI (Paris Sud University - Orsay) and
the other one at Lille (about 300 Km between them). The

passive replication duplicates asynchronously the Lille co-
ordinator state on its replica at LRI. A single client submits
1000 tasks to the Lille coordinator. We plot the number of
completed tasks as seen by the coordinator, according to the
time in seconds.

Figure 9. Reference Execution without Fault

In the first test without fault, all servers get their jobs
and send their results at Lille (figure 9). We will consider
this execution as the reference. The discrete nature of the
replication, triggered every 60 seconds is illustrated by the
plateaux on the LRI curve.

Figure 10. Execution with Two Consecutive
Coordinator Faults

The second test measure the perturbation occasioned by
the coordinator failure. Figure 10 presents the number of
terminated tasks for all minutes of the execution. We start
the coordinators simultaneously (label 1). We stop artifi-
cially the Lille coordinator when about 400 tasks are com-
pleted (label 2). Replication of LRI coordinator starts 60
seconds after the beginning (label 3) but during the replica-
tion, the Lille coordinator failed. The plateau is due to the
delay experienced by the servers to suspect the failure of
the Lille coordinator. The LRI coordinator starts receiving
results from the servers (label 4). The number of tasks re-
ceived at LRI reach the one received at Lille before the fail-

11



ure (label 5). When all servers have changed their preferred
coordinator, we restart Lille (label 6). At that moment, the
client and all servers still consider LRI as their prefered co-
ordinator. The Lille coordinator reach a state close to the
LRI one (label 7) and then stop replication waiting for the
inter replication delay (60 seconds). Then we stop LRI (la-
bel 8). The client and servers suspect the fault of the coordi-
nator and contact Lille (label 9). The test terminates using
the Lille coordinator (label 10). This figure demonstrates
that the system tolerates multiple coordinator faults.

Figure 11. Execution Under a Suspected Par-
titioned Environment

In a second test we simulate an inconsistent view of
the system by its different components: the servers suspect
Lille coordinator as faulty, the client suspects LRI coordi-
nator as faulty and the two coordinators considers the other
one as running. To implement this test, we hide the exis-
tence of the Lille coordinator to the servers and we force
the client to submit its RPC calls to Lille. The LRI coor-
dinator still works as a replica of the Lille one, enabling
the tasks and results to flow from the client to the servers.
Figure 11 compares the number of terminated tasks for all
minutes of the execution in this situation with the reference
execution. This last test demonstrates that RPC-V can cope
with system partitioning, where the components have a dif-
ferent view of the system, as long as there is a path between
the client and the servers.

6 Conclusion and Future Work

We have investigated the issue of fault-tolerant RPC on
large scale Grids connected by best effort networks such
as the Internet. Our first analysis concerned the character-
ization of these environments as distributed systems. Con-
sidering their main features, we conservatively decided to
classify them as asynchronous systems subject to intermit-
tent and permanent failures. We defined a novel automatic
and transparent fault-tolerant RPC protocol for stateless ser-
vices, based on a three-tier architecture, unreliable fault de-

tectors, passive replication and message logging. We have
discussed the implementation of this protocol within the
XtremWeb Desktop Grid middleware.

The evaluation on confined environment and real life
conditions has demonstrated the low overhead and fault tol-
erance of the resulting implementation. The most signif-
icant result is the ability of any component of the system
to join or quit it without affecting the correct behavior of
the rest of the system. The client application progresses
as long as there is a path between a client and a server,
which may involve several coordinators. A second learning
is the higher impact of server faults compared to coordina-
tor (middle tier) faults on the client application execution
time. This result is linked to the RPC execution time on
the server side, the time to cross the critical path between
the clients and the servers (potentially involving coordina-
tor replication) and the mean time between failures of the
system components. As long as the RPC execution is longer
than crossing the critical path between clients and servers,
it is preferable to reserve the most stable resource for the
servers. A third result concerns the logging technique on the
client side. We demonstrated that non blocking pessimistic
logging does not increase the submission time significantly
compared to optimistic logging while potentially allowing
a shorter re-submission time when client and coordinator
have crashed.

As perspectives, we plan to evaluate the system opti-
mizations and scalability on a larger Desktop Grid testbed
harnessing thousands of nodes. We plan to study the im-
pact of checkpointing server tasks on performance and fault
tolerance. We will also investigate fault tolerance RPC in
other contexts such as classical RPC and Grid Services.

References

[1] http://www.edonkey2000.com.

[2] P. Arbenz, W. Gander, and M. Oettli. The Remote Com-
putation System. In Parallel Computing, volume 23, pages
1421–1428, 1997.

[3] Omar Bakr and Idit Keidar. Evaluating the running time of
a communication round over the internet. In Proceedings
of the twenty-first annual symposium on Principles of dis-
tributed computing, pages 243–252. ACM Press, 2002.

[4] R. Baldoni, C.Marchetti, and S.Tucci Piergiovanni. Asyn-
chronous Active Replication in Three-tier Distributed Sys-
tems. In IEEE Computer Society, editor, Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC’02),
page 19, Tsukuba, Japan, December 2002.

[5] Roberto Baldoni and Carlo Marchetti. Three-tier replication
for FT-CORBA infrastructures. In Software - Practice and
Experience, pages :33:767–797, 2003.

[6] Ziv Bar-Joseph and Michael Ben-Or. A Tight Lower Bound
for Randomized Synchronous Consensus. In Annual ACM

12



Symposium on Principles of Distributed Computing, pages
193 – 199, 1998.

[7] Micah Beck, Jack Dongarra, Jian Huang, Terry Moore, and
James S. Plank. Active logistical state management in grid-
solve. In IEEE Computer Society, editor, 4th International
Symposium on Cluster Computing and the Grid (CCGrid
2004), 2003.

[8] H. Casanova and J. Dongarra. NetSolve’s Network Enabled
Server: Examples and Applications. In IEEE Computational
Science and Engineering, 5(3):57-67. September 1998.

[9] Henri Casanova and Jack Dongarra. NetSolve: A Network-
Enabled Server for Solving Computational Science Prob-
lems. In Sage Publications, editor, The International Journal
of Supercomputer Applications and High Performance Com-
puting, volume 11, Number 3, pages 212–223, 1997.

[10] Henri Casanova, MyungHo Kim, James S. Plank, and Jack J.
Dongarra. Adaptive scheduling for task farming with grid
middleware. The International Journal of High Performance
Computing Applications, 13(3):231–240, Fall 1999.

[11] Henri Casanova, Graziano Obertelli, Francine Berman, and
Rich Wolski. The AppLeS parameter sweep template: User-
level middleware for the grid. In ACM/IEEE International
Conference on SuperComputing SC 2000, pages 75–76,
2000.

[12] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end
wan service availability. In Proc. 3rd USENIX Symposium
on Internet Technologies and Systems (USITS, pages 97–108,
San Francisco, CA, 2001.

[13] Tushar Deepak Chandra and Sam Toueg. Unreliable fail-
ure detectors for reliable distributed systems. Journal of the
ACM, 43(2):225–267, 1996.

[14] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. Lecture Notes in
Computer Science, 2009:46, 2001.

[15] J. Czyzyk, M. Mesnier, , and J. More. The NEOS Server. In
IEEE Computer Society, editor, IEEE Journal on Computa-
tional Science and Engineering, volume 5, Number 3, pages
68–75, 1998.

[16] S. Djilali. P2p-rpc: Programming scientific applications on
peer to peer systems with remote procedure call. In IEEE
Press, editor, Proceedings of the 3rd International Sympo-
sium on Cluster Computing and the Grid. Tokyo Japan,
November 2003.

[17] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message pass-
ing systems. Technical Report CMU-CS-96-181, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA, October 1996.

[18] G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb:
A Generic Global Computing System. In IEEE Computer
Society, editor, IEEE Int. Symp. on Cluster Computing and
the Grid, pages 582–587, Brisbane, Australia. 2001.

[19] C. Fetzer and S. Mishra. Transparent TCP/IP based Replica-
tion. In Proceedings of the 29th International Symposium on
FaultTolerant Computing, Madison, Wisconsin, June 1999.

[20] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Dis-
tributed Consensus with One Faulty Process. In Journal of
the ACM, pages 32(2):374–382, April 1985.

[21] Indranil Gupta and Ken Birman. Building scalable solutions
to distributed computing problems using probabilistic com-
ponents. In The International Conference on Dependable
Systems and Networks (DSN-2004), Dependable Computing
and Computing Symposium (DCCS), June 28 - July 1, 2004.
Florence Italy.

[22] G. Tsudik S. Tuecke I. Foster, C. Kesselman. A Security
Architecture for Computational Grids. In 5th ACM Con-
ference on Computer and Communications Security Confer-
ence, page 1998, 83-92.

[23] H. Nakada, M. Sato, , and S. Sekiguchi. Design and Imple-
mentation of Ninf: toward a Global Computing Infrastruc-
ture. In Future Generation Computing Systems, Metacom-
puting Issue, volume 15, pages 649–658, 1999.

[24] A. Natrajan, M. Humphrey, and A. Grimshaw. Grids:
Harnessing Geographically-Separated Resources in a Multi-
Organisational Context. In Proceedings of the 15th Annual
Symposium on High Performance Computing Systems and
Applications(HPCS 2001), Ontario, Canada, June 2001.

[25] James S. Plank, Henri Casanova, Micah Beck, and Jack J.
Dongarra. Deploying Fault Tolerance and Task Migration
with NetSolve. In Sage Publications, editor, Future Genera-
tion Computer Systems, pages 15:745–755, 1999.

[26] M. O. Rabin. Randomized byzantine generals. In Proc. of
the 24th Annu. IEEE Symp. on Foundations of Computer Sci-
ence, pages 403–409, 1983.

[27] R. Raman, M. Livny, and M. Mutka. Condor: a Hunter of
Idle Workstations. In Proceedings of the 8th International
Conference on Distributed Systems, June 1998.

[28] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble.
A measurement study of peer-to-peer file sharing systems. In
Proceedings of Multimedia Computing and Networking 2002
(MMCN ’02), San Jose, CA, USA, January 2002.

[29] Mitsuhisa Sato, Motonari Hirano, Yoshio Tanaka, and
Satoshi Sekiguchi. OmniRPC: A Grid RPC facility for clus-
ter and global computing in OpenMP. Lecture Notes in Com-
puter Science, 2104:130–136, 2001.

[30] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack
Dongarra, Craig Lee, and Henri Casanova. Overview of
GridRPC: A Remote Procedure Call API for Grid Comput-
ing. In Springer (2002), editor, Proceedings of the Third
International Workshop on Grid Computing (GRID 2002),
pages 274–278, Baltimore,MD, USA, 2002.

[31] Paul Stelling, Cheryl DeMatteis, Ian T. Foster, Carl Kessel-
man, Craig A. Lee, and Gregor von Laszewski. A fault detec-
tion service for wide area distributed computations. Cluster
Computing, 2(2):117–128, 1999.

13



[32] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory
tcp: Highly available internet services using connection mi-
gration. In Proc.of ICDCS, volume 4, pages 17–26, 2002.

[33] Paul Townend and Jie Xu. Fault tolerance within
a grid environment. In Proceedings of AHM2003,
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/063.pdf,
page 272, 2003.

[34] Werner Vogels, Robbert van Renesse, and Ken Birman. The
power of epidemics: Robust communication for large-scale
distributed systems. In HotNets-I ’02: First Workshop on Hot
Topics in Networks, special issue of the ACM SIGCOMM
Computer Communication Review, Princeton, NJ. October
2002.

14


